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Abstract
An investigation of thrée finite-difference methods and their responses

“to the insertion 'of- simulated satellite data is pr_esented.' A simple one-level
~barotropic inodel is—used as the ".forecast" model, while the Mintz—Arakawa

two-layer model is used to furnish the initial field, the verification fields,
and the simulated sﬁtellite-data. The schemes tésted are the Shuman, the
“Matsuno-TASU, and an.implicit scheme devised by—- McPherson. Results
‘ -:indicate that the schemes react to inserted data as they wogld react to un-

filtered initial fields. The schemes which contain significant implicit viscosity

s‘u'e‘capable of damping the high frequency 6sci11ations which occur after

insertions, hnt m:ch schemes may cause a loés of information. The schemes
"ﬁrhich cogtam less damping capability produce “'shock™” waves which damage
-the forecasts. It is also found that insertion _of winds along with temperature

data improves the forecast considerably.



L “Introduction _
| “The use of asynoptic satellite data to-update integrations of numerical

i;atﬁospheﬁc circulation models has been the subject of much numericgl experi-

' ':'”-fmentatioﬁ recently, Most experiments -deal with what has come to be known as

| four—dimensional data assinﬁlation,' which consists of the insertion of data directly
into the model at the appropriate grid point and time step of thé calculation. The

~~data are usually atmospheric te;nperature profiles derived from infrared radiance
measurements. It is hoped that by replacing enough computed temperature values
with actual temperature measurements, the other field variables will adjust

. themselves to the observed temperature profiles, and the forecast values. will
approach reality. Simulation experiments have been .performed using computer
‘produced té;rnper;ature fields. One major obstacle to the direct insertion of data,
discovered during these experiments as wéll as during experiments involving
actual satellite soundings, is the production by the model of small. "shock" waves
‘afier the insertion, because of the sudden gradient imposed by the 'inSertion.

“ These shock waves may eventually dissipate, but they may leave in their wake
a forecast which hardly shows the effect of the insertion. When actual data are
insertéd, as opposed to model-generated data, the shock effect will prob.ably be

. moi‘e ﬁoticeablé because thé model is more attuned to data which it has produced,

“and the adjustmentof the other field variables is accomplished more smoothly.
In ‘a_recent' experiment, Jastrow and Halem (1973) have discovered this to be

the case,
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~ Various means to control these shocks were discussed in the Symposium on
-~Four-Dimensional Analysi.s at Princeton (1971). Some workers believed that a
weighting of data before insertion would reduce the shocks while sti_ll ‘accoinplish-
-~-ing the same goal of updating thé forecast field. Others argued that insertions of
data with or without weights would accomplish the same results. (Kasahara
1972) gives a brief review of most papers presented at the symposium). Re-
-;:..«_-Cently,'Hayden -(1973) has shown that by ’-me'ans of "dynamic balancing,' the
-effect of insertions can be enhanced. Dynamic balancing was conceived in an
effo.rt to deal with the problems of initializing the field of variables for numerical
-models. It consists of adjusting the wind, temperature, and pressure fields so
tha:t they are- in dynamic balance and do not give rise to fals'er waves which ﬁay
~disrupt the fore(;ast. The insertion of data is similar in many ways to the initial- ‘
- ization of the field é:ﬁd can thus be treated _in a similar fashion. Thus, a localized
dynamic balancing of the area about an insertion should improve the updating.

-~ process.

Experimeilts and discussions dealing with four-dimensional analysis usually
-contain little mention.of-the models-and their-respective differencing schemes.
_Although many experiments have been performed at different research -centers

using different models,__thfre is a need to investigate the effect of the models
themselves, especially with respect to their characteristic differencing schemes,

-.on conclusions concerning insertions. This study is an attempt to demonstrate



the response of vaﬁous finite-difference schemes to the insertion &0f unweigﬁted
data. Using a simpie barotropic model as a forecast model and the Mintz- Arakawa
( M-A) two-level general circulafion modell as a source of data, three schemes

will be tested in regard to their ability to assimilate inserted data effectively.

These schemes are: 1 A Shuman scheme employing centered time differences

and 9—-point spatial smoéthing; 2, A Matsuno-TASU scherne,. which uses a predictor—
corrector time differencing and an alterilating, _staggered space differencing; and

3. a semi-implicit scheme similar to one proposed by McPherson (1971) using

much larger time stepsrthan allowable with the first two schemes.

II. Design ofl the experiments:

ﬁThe model used to test the response of ﬂxe differencing schemes waé a
one-level 5arotropic model -containing three equations relating velocity and
geopotential height., Data selected for initial conditions, boundary conditions,
Aiusertion data, and verification data were obtained from the two-layer M-A model

described by Gates et al, (1971), All the data were from a computer simulated

‘February situation. Forecasts were made up to 24 hours at the 500 mb level and

verified agaihst the M-A fields at 6~hour intervals. The domain for all forecasts
was limited to an area slightly larger than the North Pacific Ocean, extending
from approximately 2N to 70N and running westward from 110W to 130E. The
restricted domain neces;itated some specification along the four boundaries. Thié

was accomplished by inserting M-A data at the boundary points at each time step,



. .-tﬁereby‘ preventing boundary effects from ultimately ruining the forecasts., The
-grid system employed was entirely similar to the M-A staggered grid system in

“order to avoid interpolation procedures, although this unrealistically tuned the

. forecasting model to the inserted dat#. The grid increment in the East-Wes{ direc-
‘tion, AX, is 5 deg longitude, while the No‘r_th—South unit increment, Ay, is 4 deg

: latitude?' The grid is staggered in the sense that not all variables are calculated
at the same grid points, In the M-A rhodel, the thermodynamic variables are
calculated on grid points seperate from the points at 1.‘a‘fhich wind velocities or

© 1mnass i:ransport térms are calculated, The barotropic model has only three
wvariables, but its grid is also stagzered, _with geopotential heights calculated c;n
one grid and the components of wind velocity calculated on a grid staggered

-2~-1/2 deg west and 2 deg south of the height grid.

"The equafions for the barotropic model are similar to the equations
governing the free surface conditions of a shallow fluid. The equations contain
no sources or sinks of energy except at the boundaries, but divergence of the

-velocity fields does exist, and hence vorticity is not conserved. The equations

are: , L

wﬁl’.[‘he time increment, A t, was six minutes for both the M-A model and
-~-the barotropic model when both the Shuman and Matsuno-TASU scheme
.were applied the semi-implicit scheme allowed for 2 30-minute time

increment.
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where u is the westerly wind component, v is the southerly wind compenent, ¢
-is the geopotential-, f is the coriolis parameter, and m. ig the map factor. The
‘independent variables are the East-West distance; x, the North-South distance, y,

. ard the time, ft.

- The experiments used t'he barotropic model as a forecast model, while the
M-A model was ;'egarded as the ideal state or "nature". By inserting data from
the M~A model into various numerical approximations to (1) -and measuring the degree
to which the forecast was improved by the -insertion, some conclusions could be
formed I'egardiné,r the effect of particulér mumerical schemes on the updating

..process. These insertions were performed at each time step, along paths rei)re-
senting the swaths of satellite observations, by merely replacing the calculated
values found at all grid points within the swath with data from the M-A model.

" The entire domzi'in was covered by ti*ze equivalent of three staggered satellite
;passes in-approximately 4 to 5 hours of-simulated time and zll grid points had

.their.values replaced once and only once in that-period. The width of each of

the three swaths is approximately 800 km, implying a side scan capability of



-400 km from the sub-satellite point. The inserted data were assumed ideal in

that no "error' was added to the M~-A data, nor were any grid points "unobservable."

<For each numeric.al scheme tésted, the lexperimentai procedure was as
: follows:. 1. A 24~hour control forecast was made using the prescribed initial |
 field. The RMS differences between the forecast and the M-A fields were calcu~ |
:~lated at 4, 5, 6, 12, 18, and 24 hours, . The spectrum of kinetic energy over the
_‘ central latitude 39N) was determined at each hour and averaged over 12 hours.
~2. Using the same initial conditions, a second 24-hour integrat'ion was made with
"M-A data inserted at each time step untii all grid points were covered once. This
“means that insertions were only performed for the first 4 to 5 hours, while the
: modél continued to forecast until 24 hours, The data consisted of all three varia-
bles (i.e., u, v, and ¢)_except in one instance which will be explained below. The
RMS differences and energy spectrum were calculated fof the insertion case as
wel]. 3. Another forecast was made differi.ng from the control only in that the
initial conditions were perturbed by random errors. These errors were uni-
foi'mly distributed with mean 0. The RMS differences between the perturbed
-initial field and the non-perturbed initial field were 3.19 m sec_1 for u,
1,02 m sec_1 for v, and 32,46 gpm for mg-l s where g is the gravitational
consfant, 9.80 m Sec_z. This forecast was made without any insertions.

4. Starting with the perturbed initial conditions, another 24-hour run was made

~with insertions to update the integration.



- The RMS errors did nof asymptote.by 24 h&urs, Dor were they expected to ‘
do so. Yet infegrations ﬁrere not carried out for longer periods because the
purpose here was to investigate the effect of insertions on short term forecasts
‘rather than possible initialization through long terrﬁ insertions of both synoptic

and asynoptic data. In fact, the 24 hour forecast can be regarded ;Ls al19-to .

20-hour forecast based on an initial field derived after 4 to 5 hours of insertion.

This 4-step procedure was followed for each of the three schemes tested,
In steps 2 and 4, however, varying methods of insertion were tested. The details

-and results of these experiments will be discussed in the ensuing sections.

-

L. Three schemes

.'I-'l-le Shuman Sr;‘lﬁeme

The first scheme investigated is one which is in operation in various
~models, notably at the National Meteorological Center in Washington, D. C.
Details of this scheme, named afteri F. Shuman{ are outlined by Haltiner
n(1A9’?1). Briefly, the scheme uses the eight points contiguous to é central grid
_point in tald;ﬁg differences (sce. Appendix). This results in significant spatial
smoothing at eaph time step. The time differencing is generally centered except
-that some time smoofhing is necessary to avoid the growth of instabilities,

Implicit viscosity of the Shuman scheme is quite small compared with many other

schemes, so that small waves can grow considerably (see, for example,



' Grammeltvedt (1969)). It is, therefore, advisable to adjust the initial wind field
by the use of the balance equation or by eliminating the non-divergent component

of the winds and substituting the divergent component of the forecast wind field.

~Similar sensitivity was encountered when data were inserted during the ex-

periments. In addition to small oscillations ariéing due to physical v?aves, com-
~putational difficulties were encoﬁntefed because of the centered time differenciﬁg.
The insertion of raw data at any grid point initiated a computational oscillation
due to the alternating effect of the centered time differencing, This latter defect
was remedied by "re-initializing" the point of insertion, that is by employing a
forward time step at the point of insertion- and at the time of insertion, similar

to tile forward difference empioyed over the entire field at the iﬁitial time step.
- This simple procedure eliminated the destructive computational mode and reduced
the error in prediction considerably. Fig: la shows the change in time of u at
the central grid point for the control fofec ast, the M-A data, thel forecast. with
insertions without adjusting the cent;ared differe;gcing (CEN), and tﬁe forecast
with insertions but with forward differencing applied at the point of insertion
FWD). The insertion takes place for this particular grid point at time step 22
and its effect on the velocity values is depicted until time step 72, long enough
for a definite wave pattern to ;appear. No M-A data, however, were available
beyond 6 hours (time step 66). The CEN and FWD forecasts éiffer significantly

afterwards. The CEN curve indicates a high frequency oscillating wave, while
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the FWD fui'ecast shows no such tendency. Tﬁe ﬁavelength of the FWD forecast curve
seems to be equal to the wavelength of the control forecast curve, although it is
notably out of phase x;vith the control and is closer to the M~A data. The effect

of the forwax;d differencing is to have the model "forget" the prior calculated data

and begin the computation from an almost new initial state. This effect is even -
more noteworthy when there are random errors present in the initial data. In

this case, the foﬁwd differencing helps cancel not only the effect of the diver-

gence of the forecast from the M-A model but also the effect of the initial random
error, as can easily be observed in Fig. 1b., The CEN forecast, on the other
-ﬁand, oscillates with even greater amplitude than in the former case because of

these two effects,

.

The growth of RMS errors when initial conditions were unperturbed showed
the same pattern for all 3 schemes. They all exhibited monoto:ﬁc_increases of
RMS errors for the first few hours, but with the rate of growth much smaller
when insertions were performed. ﬁesults of the 9xperimenfcs involving perfect
jnitial conditions are omitted in favor of the more interesting experiments in-
volviﬁg perturbed initial conditions, Fig. 2 demonstrates the impact of the in-
sertions on RMS error growth, Starting with initial random errors, there is a
period of adjustment where there is no significant increase of RMS error even

for the control forecast, (This adjustment may be related to the filtering of

high wave numbers present in the initial field which are present neither in the
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_fozfeczists nbr in'tile verification fields from the M-.A model. In the real world, |
“however, the high wave numbers are present in the verification fields as well
--gnd this adﬁustment period will probably not exisﬂ. During this time, the inser-
tions help reduce the RMS EITOoYS to levels lower than their initial state. The
FWD forecast is decidedly more efficient in reducing the error level, so that by
5 bours, the efror Ievei reached is the same as the level of error produced by -
Aw.t.he FWD forecast starting from perfect._initial conditions (nmot shown). In other
words, the FWD foreéast effectively "forgei:s" the poor initial conditions and

bases its predictions on the updated inserted data.

Matsuno- TASIj schéme

The mumerical scheme of the M-A model is one which is temporally a -
predictor-corrector scheme while spatially it uses a time-alternating space-
uncentered ({TASU) scheme See Appendix}. Arakawa (1972) demonstrates the
-merit of this scheme in a simple example involving the two-dimensional shallow-
water equations without dissipation terms, but with a point source and point sink
present in the region. All othér schemes tested showed a false alternating
pattern instead-of a monotonic decrease.of the height toward the sink, The:

~Matsuno-TASU scheme, however, produced results which Weré realistic with a
decl;ease in height from every direction towards the sink. The scheme's effec—

. tiveness is due to the combination of the two-step Matsuno scheme and the alter-

nating space differencing of the TASU scheme.
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~The Matsuno scheme involves predicting an intermediate value of the varia-
.- ble being dealt with, then using that value to arrive at the desired forecast.  That
is, if Q is the variable to be predicted at time step n+1, given Q at time n, then

a quantity Q* is determined so that

n
Q*=Q" + Q) , | @
where the superscript refers to the time level and £@Q) is the algorithm involving
—known values by which the prediction is made. Q* is now substituted for Qn in
the algorithm to obtain
nt1 |
Q" = Q" + £(@®) @

The Matsuno scheme, although comparatively costly in computer time, can
" because of its implicit viscosity, filter some of the small waves efficiently. This
viscosity, after insertions are made, may diminish their beneficial effect while

‘damping the shocks. This aspect will be discussed more fully below.

The TASU scheme involves shifting the space differences to alternately the
upper-right then the lower-left portion of the grid box surrounding any point, In
N ‘.,.the experiment here and in the M-A model the TASU step is invoked only once
every five time steps and the‘n onl_y during the second half of the time step. At

~ all other times, the space differencing is centered,



13

‘In the experiments involving the Matsuno-TASU séheme, insertions of two
kinds wére made. Since the Matsuno time steps consists actually of two half-
‘steps, i.e. one predictor and one corrector, it is possible to insert values after

. . -either half of the time step.‘ That is to say, it is possible to substitute at a par-
ticular grid point at some given time an oioServed value of Q for either Q* or Qn+1
... {where Q, Q*, and Qn+1 have the same me.a.ning as in (2) and (3)}. Upon attémpt-
ing boﬂi forms of insertion, it was found that inserting after the first half step
| -given by (2} (herein referred to as "insertion after 1") was far inferior to inser';—
‘ing after the second half given by 3) (herein referred to a.s "insertion after 2").
~ This was probably due to the strong damping effect the second half step had on

the; inserted data, their influence being greatly reduced and the forecast harsly,

if at all, improved because of the insertion.

Fig.. 3 demonstrates the effect of the inserﬁons on the RMS error for the
experiment where initial error was present. Only insertion after 2 resulté. in
a meaniﬁgful reduction of RMS error. Insertion after 1 is almost indistinguish~
-able from the conirol case. All cases resulted in an initia] adjustment period
-during which the RMS-error was substa.ntialljr reduced. When insertioné took
..place. during the first few time steps, the RMS errors were reduced to values
| significantly lower than the RMS errors of the control forec ast. The appearance
of thié adjustment period and its obvious reinforcement by the insertions may .

possibly be explained as the result of filtering by both the barotropic and the
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M—A models. By perturbing the initial conditions with random error, small
_.Waves are probably produced. The M-A model successfully filters these waves,
" so that the verification fields and the satellite data are devoid of these high wave
. mimbers., The barotropic model becauge of its spatial resolution and with the.

assistance of the Matsuno-TASU scheme begins filtering these waves as well,.

: making its early forecasts more compatible with the M~A fields despite the pre-
‘-'di(r:tability factor. If M-A data are inserted,-the filtering is apparently acceler-

-ated and the RMS error reduced finally to a level which is nearly independent of

the initial state, Whether this will occur if actual atmospheric data are used is

doubtful, but can only be verified through actual experiment.

Fig. 4 displays the time history of u at the central point of the grid network.
It demonstrates clearly the effectiveness of the insertion on updating the model.
..The control case and insertion after 1 result in values which are substantially
different from the M-A data, When insertion after 2 takes place, however, the
value of u is rapidly brought closer to the M-A data and stays there for some
time. None of the severe oscillations produced by the Shuman scheme are
present in this experiment, indicating-once again the strong damping of the

_Matsuno-TASU scheme.
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i Sémi-—ImpIicit Scheme

Implicit and semi-implicit schemes are often more economical than explicit
~-schemes subject to the Courant—Friedr‘ichs;I,ewy condition for linear stability.
By expressing more than one term at the forecast (n+1) time level, larger time
‘increments are possible without causing instabilities, The _la;rger time steps,
' h_owevér, imply that longer ﬁeﬁods can be considered synoptic with respeét to
»«the-insertion of data, Satellite data which are gathered over the entire period of
the time increment At, are inserted at one instant, What effect this wholesale
insertion has on the updating process depends on many faqtors, among them the

--nature of the data themselves and their change with time.

- The experiment conducted involved a scheme recently developed by
McPherson (1971}, This scheme separates the advective terms from the other
terms of the equation which are evaluated at the forecast time (see Appendix
for details), . By cross differentiation the velociﬁes can be elimihated, leaving

a Helmholiz equation of the form:'

2 n+1 n+1 2 n. -1 n 2 n -1
Vg =g e ) = E (DY) @)
- »
where
- . D e i At = 1 —
D= s A= 1+ fz D2 ,

2at, n#1



16

| and F is some known function of space at any given time step. Wz is a numerical
appréximation to the Laplac'ian operator V2 . The superscript represents the
time step at which the variable is being evaluated. Once ¢n+1 is evaluated from
(21),. it is a simple matter to determine unJr:L and vn+1 . ) is solved by using a
relaxation technique, starting from some initial guess of ¢n+1 . For this set of
" experiments, a time inérement of 1/2 hour was selected, which reduced compu-

- _tation time to about 1/2 of that requ.ired‘for the Matsuno-TASU scheme desP_ite

~the iterations reguired for the relaxation.

in addition to the insertion experiment i.nvolving‘ﬂle assimilation pf data
frofn all variables at éach time step, an attempt was made here to measure the
effiéa;cy of inserting geopotential heights alone. This is similar to the praqtice
-of insertiné only temperature lapse rates which are derived from infrared radi-
‘ance measurements. When contrasted with results obtained from the insertion

of all variables, the experiment could indicate whether the "balancing'' of the
velocity fields is substantially beneficial to the assimilation process given

~the grid size and the data characteristics for the experiment. When perfect

“jnitial conditions are used, the insertion of all variables does not create |

é.significant imp:rovement over the insertion of the temperature field alone., There
is, expectedly, a lower level of error when all variables are inserted simply be-
cause the quantity of inserted data is greater. When fandom error is added to

the initial conditions, however, the dynamic balancing accomplished by the inser- |

tion of wind data along with the heights produces significant improvements in the
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forecast. Fig. 5 shows the RMS error groﬁth fﬁr u when random errors are
‘present in thé initial state, As in the case of the .Matsuno-TASU scheme, the
first few"time steps result in an adjustment which lowers the RMS error even

if no insertions are performed. | The degree of édjust;nent is limited when only
heighis are inserted, but a significant dip occurs when all variables are inserted.
The level of RMS errox" reached through insertion at 5 hours:is again equivalent
‘to the level reached when inserting aftér perfect initial conditions (nhot sh_own)
indicating that the insertions update the computations eft‘iciently despite the

‘larger time increment of the semi-implicit scheme.

_ Fig. 6 depicts the time changé of the variable u at the central grid point
for the vgrious experiments with the semi-implicit scheme. Because of the
larger time increment, only 15 time étepé are presented, so that the-simu.lated
time -lapse is consistent with earlier figures, Despite the randdm errors present
1in the initial conditions, the control run does not give rise to oscillations, When
__:¢ alone is inserted, the change in u values is not significant for at least 15 time
steps. The insertion of all variables does, however, have a notable effect which
--gives rise to oscillations similar to, but ﬁot quite as large as, those produced
.-by the Shuman scheme. The large time steps aré perhaps a factor in creating

these oscillations. Large doses of data are injected at each time step and only

limited filtering can be performed because of the few steps that follow the
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insertion. It may prove beneficial to reduce the time step immediately

- following insertion so that the -adjustment to the model may take place in a

relatively short period of simulated time.

'IV. Energetics and Comparisons

A study of the energetics involved in the various numerical schemes was

-._.performed by calculating the k:inetic energy over the central Iati'tude as a

‘function of zonal wave number. The wave numbers mentioned here are not

‘global but refer to the domain of integration. Only one third of the Northern

‘Hemisphere is represented on this domain, so that wave numbers should be

‘multiplied by 3 in order to correspond to full-latitude wave numbers. The

kinetic energy was calculated at each hour and averaged over 12 hours., Only

‘one latitude was involved; too much spatial averaging may have resulted in

disguising the effect of the insertions,. -

When perfect initial conditions were used, few departures from the con-

~trol energy spectrum were observed afier insertions, When random errors

were present initially, however, the insertions managed to return the spectra

to the lica_n—perturbed control spectra, ‘The effect of the random errors was to

' shift energy from low wave numbers to higher ones probably because of the

8

creation of small wave disturbances., The insertion of data from the M-A

“model counter-acted -this-trend-and shifted the energy back to the unperturbed
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..speétral distriﬁution. Fig. 7 shows the various spectral distributions with a:ndl
withouf insertions. For all 3 numerical schemes, the optimum method of inser-
tion (from an RMS standpoint) is seen to increase kinetic energy in the region of
wave mumbers 1 .and 2. Between ﬁave numbers 2 and 4 there is a crossover,
and: kinetic energy is lower for the insertion experiments for these higher wave

- numl;.'ers, Wave No. 5 is anomalous in all three experiments, a local minimum

being achieved by the control but not b_;,r the insertion spectra. Beyond No. 5,
there are variations among the three-. schemes, but this is to be expected in the

sensitive low energy regions.

_ The 3 schemes also d;emonstrated varying degrees of skill in forecasting.
The Mats_uno-TASU ‘scheme reached lower levels of RMS erxor than either of
the two other schemes. The Shuman scheme, although greatly enhanced by
the ii)sertions, has a large erroxr growth*r.alte. The semi~implicit scheme
produces RMS errors at 24 hours which lie between those produced by the other
| 2 schenﬁes. No generalizations should be drawn from this behavior, however,
as to the forecasting ability of a particular scheme, Ii must be remembered
 that the data for verification were derived from the M-A model, which itself
-uses a i\fiatsuno—TASU differencing schéme, and not from observations of the

real atmosphere. All that can be properly assumed is that data produced by

the barotropic model using the Shuman scheme do not correlate well with data



20

.- produced by the M~A model using the Matsuno-TASU scheme. A better test of this
 would be to use the same model, but with different finite~-difference schemes,

-~ to produce forecasts which could then be examined and compared,

V.‘ Conclusions
Three numerical schemes have been examined with respect to their reac-
tion -to the sequential insertion- of data mto various grid points during computa~
tion, Comparisons were made on the basis of RMS errors, the time history at

an individual grid point, and the 12-hour spectra of kinetic energy.

Results indicate that inserting can be an effective means of updating model
integrations rggar&gss of the numerical scheme, but that some care must be
taken as to how the insertions are to be performed. The Shuman scheme proved
very sensitive to the inserted data, and severe oscillations could result if cen-
tered time differencing is retained during the insertion process, The Matsuno-
TASU scheie, oﬁ the other hand, proved capable of filtering spurious short
waves effectively, but insertions had to be made after the complete time step
or the influence of the data might be lost. The semi-implicit scheme gave rise
to some oscillations despite its damping mechanism, probably due to the larger
dosé of data inserted at each time step and the smaller number of time steps
needed to achieve a forecast. In general, the schemes behaved with respect

to insertions as they usually act with reSpe.ct to initial conditions. The Shuman
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~8cheme requi.res some adjustment of the initial ‘fields (see for example
~Haltiner (L974, p. 268)) because of its lack of internal viscosity. The
;:.Matsﬁno-TASU scheme on the other hand requires no balancing of the initial
~field (see Somerville, et al. (1974)), in all likelihood because of its strong
' ‘ﬁlten.:ing and damping properties. These schemes behave entirely similarly

-~ with réspect to data insertion, as described above.

V’I‘he impact of data insertion on the energy spectra seemed to be contrary
‘to the eﬁgpected results. - Instead of creating small shocks which give rise to
high;wavenumber oscillations; the insertion of computer-produced data
.trapsferred high-wavenumhber energy created by poor initial conditions to the
lt:nlaver wa}venumber ‘Tegion, This may be seen as due to essentially the re-
initialization of the eﬁtire field with tﬁe inserted déta, which have already been
-earefully filtered by the M~A model. If real atmospheric observations were

used, this shift in the energy spectra may well have been in the other direction.

In the future, research should center about the ﬁse of actual data rather
than computer simulations. This should help determine which of the numerical
schemes are best equipped to handle expected satellite observations of the real
atmoéphere a.nd what possible methods can be introduced to improve their

‘ ‘assimilation.
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Appendix

Detaxls of the schemes

1. Shuman scheme ~ The details of the Shuman scheme are de-

cribed in Haltiner (1971). (1) written in terms of the scheme become:

xy

TtV Y Y TV
t 4 y X
Ve (Y Y Y T )
Xy o Xy
SU_FW L Am sy ox _ TR LY 5% g
q&p @ m v @ vy m ¢ quy mu'qﬁx
—-X

where A” = i(A + A, Jand A = 1/Ax (A, - A, \. There are

i+ i~ b ez -5/

differences between the equations presented here and those given by Haltiner

(1971, p. 228) because of the staggered grid system employed in these experi-

i

_ments.

Al terms are evaluated in the center of a grid box consisting of 4 points.

The final value for a grid point is determined by averaging the values in the

four surrounding box centers. Extensive smoothing is thug accomplished at

“each time step.



- 24

2, Matsuno-TASU scheme - A éémplete descfii)tion of this scheme is given by

- Arakawa (1 97:2)‘. The Matsuno time differencing scheme ipvolves a predictor- -
‘correétor computation with two iteraﬁons at each time step as described in
section 3, The TASU space differencing alternates with centered differencing
once every 5 time steps. The TASU differencing involves taking x-differences
centered Ay/_z above the central point and Ax/2 to the right for y-differences

: during one time step, then taking differences below and to the left for the next
time difference. The TASU differencing is performed only during the second

of the Matsuno time steps. The sequence will then look like this for six time

steps:
Time step Time differencle Spabe differéné'e
1 | Forward Centered
Backward Centered
2 Forward Centered
ﬁackwaid Centered
3 Forward Centered
Backward | Centered
4 Forward Centered
Backward Centered
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‘pime atep Time difference Space difference
5 | Forward ~ Centered
| Backward ‘Upper-right
6 - - Forward Centered
- Backward lower-left

3. Semi-implicit scheme - Many implicit and semi-implicit schemes have
been devised to avoid the restriction on the time step imposed by the.
Courant- Friedrichs- Lewy condition for linecar stability. The one used for this

study is based on the scheme devised by McPherson (1971).

" The equations of motion are written in difference form with all but the

advective terms given at the same time step:

n+1rk k n aun n aun
@ " -u )/D+m<u T Y -—-——*—D

oy
+ m og —fvn+1=o
oxX
g n n+1
(vn+__1—vk)/D+m<un §av n av > é—-—-+fu -0,

where D=2 At and k = n-1 except whenn =0. (Atn=0, D=t andk =0.)
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Eliminating ’i’ f_rom the f1rst equation and u 1 from the second equation

leaves ‘explicit equations for u® and V ntl in terms_ of ¢ ntl as follows:

n+l _.n+l

n+i1 ap a@
A - R _ e+ fD )
u B-D (m 3% + Ay
(A2)
_ n+l n+l ‘
n+l 3¢ - 3¢
AV T =A-D ( 5 fbm S ) ’

k

L n n
' 2
-whereh=1+f2D,A=v -fDuk+D[fD<mun§.':L+ n du

BX v ay
n n ' n
-(muné—"f- + v BV )] and B=u® + £D v wD[fD(m o2
ox 3X

' ‘n ' n n
n av n au n su
o = A = S¥Y 4

Cross differentiating and addmg to find the divergence which can then be
substifuted into the geopotential equation to give:.
2 n -1 ‘
® - X9 (D¢) -—Z\F(Dq&) A3)

\_"’2 n+l ntl 2 n

, : g
2 . .
where V' is the Laplacian operator ( -a-—2- . 2 ) while F = qén D( 24
X ayz : oy

. . _ n u =
e OB : 3¢ 3¢ n.n: -1 3m k
+m ax>+D(mu S T 3y )-—D¢ v m 5*;-95 is a known

“function of space at each time step.



21

" (A3) is the equation which appears in section 3 and can be solved numerically
- by means of a relaxation technigque, The relaxation was performed sequentially so
" that Jower-left values were immediately replaced by the new values. The remainder

-~ R was thus determined at each point j,{ by the formula:

‘-‘_

m n+1

M’ ¢ “1 m (AY) <¢]+1,'f;
_ (Ad)

St @ezm® (a0 (7 YT ) - AFT (D )T

where the superscript in terms of m refers to the iteration number., Once Rm

is determined, the value of ¢n+1‘is calculated by over-relaxation, i.e. adding to

_ -1
m. . o_.m [, . 2, 2 =2 _ 2 n-1l-7 oo mi
¢ - the quantity 1.5 K Lz+zm {hyY) (4Ax) + AL ¢ _| e LNSTALoN3

continued until all Rj L < 10“3 . The mumber of iterations required for this ac-

curacy ranged between 35 and 40 at each time step.
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Figures

‘ . 1 :
a) Time change of u (m sec ) at the cenfral grid point using the

. - Schuman scheme, for the control run, the insertion run maintaining

centered differsnces. (CEN), the insertion run with forward differences

-at the time and point of insertion (FWD), and the M-A data to 6 hours.

“The time step is 6 minutes.  b) Same as a) except that random errors

are present in the initial conditions.

Growth of RMS error in u (m sec_l) for the Shuman scheme for the
control case, insertions with CEN, and insertions with FWD. Random

‘errors were present in the initial conditions.

-1 .
gec ) for the Matsumo-TAST scheme

e L 2va Lilldl

CGrowth of BMS error in 1

~ for the control case, insertions after the first half time step

(after 1), and insertions a.f'ter‘ the full time step (after 2), Random

errors were present in the initial conditions.,
Time history of u (m'sec_l) at the central grid point during Matsuno-

TASU experiments for the control case, insertion after 1, insertion

‘after 2, and the M-A data to six hours. Random errors were present

in the initial conditions. The time step is six minutes.
Growth of RMS error in u (m sec—l) for semi-implicit scheme for
the control case; ‘insertion of all variables u, v, and ¢, and inser-

tion of ¢ alone. Random errors were present in the initial conditions.



~ Fig. 6:

Fig. T:
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Time history of | u at the central grid point during semi-implicit

-scheme experiments including the control, insertion of all varia-

bles, insertion of ¢ only, and the M-A data to six hours. Random errors

were present_in‘ the initial conditions. The time step is 30 minutes.

2 -2
Kinetic energy (m sec - ) spectra averaged over 12 hours for the

central latitude 39N for the control case and the most effective
insertion of é) the Shuman scheme b) the Matsuno~-TASU scheme

and c) the semi-implicit scheme.
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